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1. Summary 
  
Performance analysis techniques are fundamental to aid the process of large-scale 
protocol design and network operations. If successful, such tools allow the system and 
network administrators to gain varying degrees of qualitative and quantitative 
understanding of the behavior of the system-under-test. A number of specific lower-level 
objectives include: validation of protocol design and performance for a wide range of 
parameter values (parameter sensitivity), understanding of protocol stability and 
dynamics, and studying feature interactions between protocols. Broadly, this is a quest 
for general invariant relationships between network parameters and protocol dynamics.  
 
However, behavior of networking protocols is predicated on several parameters and has a 
bumpy "search space". Our project developed a solution to this dilemma: we view each 
simulation as a random experiment that gives some incremental information about system 
behavior and design the series of experiments to maximize the pace of learning about 
system behavior with the minimal number of experiments. To speed up the search and 
learning process from those experiments, we designed novel, highly scalable and efficient 
parallel network simulators. Those include the system for integration of simulations (even 
done with various simulators) and models using the Genesis system, as well as the 
advancement in the state of the art in the parallel simulation of network protocols under 
the optimistic protocol in the form of the ROSS system. Genesis imposes very low 
requirements on synchronization, communication and memory requirements of the 
executing hardware, yet supports superlinear speedup of the computations over the 
increasing number of processors. ROSS incorporates two novel techniques for optimistic 
parallel network simulations: light-weighted model implementation framework and 
“reverse computation” for rollback of the events when out of order event is received by a 
parallel processor. 
 
There was also theoretical work done in traffic modeling and BGP routing issues. Finally, 
our work addressed the critical issue of Quality of Service (QoS) that was unsolved for 
multi-domain IP-based inter-networks primarily because of complex deployment and 
coordination issues. By “QoS” we refer to stable assurances on loss rate, bandwidth and 
delay.  
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2. Introduction 
  
Performance analysis techniques are fundamental to aid the process of large-scale 
protocol design and network operations. There has been a tremendous explosion in the 
variety of tools and platforms available (e.g., ns-2, SSFNet, Click Router toolkit, Emulab, 
Planetlab). The high-level motivation behind the use of these tools is simple: to gain 
varying degrees of qualitative and quantitative understanding of the behavior of the 
system-under-test. A number of specific lower-level objectives include: validation of 
protocol design and performance for a wide range of parameter values (parameter 
sensitivity), understanding of protocol stability and dynamics, and studying feature 
interactions between protocols. Broadly, we may summarize the objective as a quest for 
general invariant relationships between network parameters and protocol dynamics.  
 
However, the community still looks at the sample results obtained from such tools with 
skepticism because they are isolated (potentially random) and may not be representative 
of the real world. Behavior of networking protocols is predicated on several parameters 
and has a bumpy "search space" (see Figure 1). The need for scalable simulation and 
meta-simulation tools is implicit in the following statement: “...The design of the Internet 
continues to evolve, and many aspects of its behavior are poorly understood… simulation 
plays a vital role in attempting to characterize how different facets of the network 
behave, and how proposed changes might affect the network’s different properties. Yet 
simulating different aspects of the Internet is exceedingly difficult...” (V. Paxon and S. 
Floyd, Why We Don’t Know How To Simulate The Internet, Proc. WSC97). 
 
Our project developed a solution to this dilemma: view each simulation as a random 
experiment that gives some incremental information about system behavior, and design 
the series of experiments to maximize the pace of learning about system behavior with 
the minimal number of experiments. This area of study is called “experiment design”. 
Unfortunately, experiment design techniques of the past worked only on the small scale.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  An Example of Network Protocol “Bumpy” Search Space as a Function of 

its Parameters. 
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In our project, we addressed the problem of large-scale experiment design with 
techniques that extract maximum information and confidence from a minimum number 
of carefully designed experiments. Such techniques can be used to find “good” results 
fast to guide either incremental protocol design or operational parameter tuning. One key 
result of this work is the development of a new algorithm, Recursive Random Search, a 
“Swiss army-knife” type heuristic optimization and experiment design algorithm that 
outperforms all comparable techniques (e.g., simulated annealing, genetic algorithms, 
table search, multi-start hill climbing). This part of the project was led by co-PI, Prof. 
Shivkumar Kalyanaraman. 
 
 
  
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. An Experiment Design as a “Meta-Simulation” Tool that Decides the 
Sequence of Simulation Experiments that Maximizes Learning about the 

Underlying Network. 
 
As shown in the Figure 2, each “experiment” chosen by our framework (RRS or USF) 
may actually be a large-scale simulation! The issues of large-scale simulation have been 
addressed by other co-PIs in our project and included the development of a novel, 
optimistic parallel network simulator called ROSS.Net and design and implementation of 
the network decomposition and abstraction tool called Genesis. Genesis is capable of 
integrating different simulators and/or models in one large network simulation. 
 
The way experiment design fits into the larger online simulation context is shown in 
Figure 3. 
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Figure 3. An illustration of How Online Simulation & Experiment Design (Black-

Box Optimization) interfaces with a network. 
 
In simulating large-scale networks at the packet level, one major difficulty is the 
enormous computational power needed to execute all events that packets undergo in the 
network. Conventional simulation techniques require tight synchronization for each 
individual event that crosses the processor boundary. The inherent characteristics of 
network simulations are the fine granularity of events (individual packet transitions in a 
network) and the high frequency of events that cross the boundaries of parallel 
simulations. These two factors severely limit parallel efficiency of the network simulation 
executed under the traditional protocols. 
 
To satisfy the demand for scalable and efficient network simulation while avoiding the 
above mentioned pitfalls, we developed a novel approach to scalability and efficiency of 
parallel network simulation that partitions the networks into domains and simulation time 
into intervals. Each domain is simulated independently of and concurrently with the 
others over the same simulation time interval. At the end of each interval, traffic statistics 
data, including per flow average packet delays and packet drop rates, are exchanged 
between domain simulators. The simulators iterate over the same time interval until the 
exchanged information converges to the value within a prescribed precision before 
progress to the next time interval. This approach allows the parallelization with 
infrequent synchronization, and achieves significant simulation speedups. An overall 
execution scheme of this approach is presented in Figure 4. 
 
Large memory sizes required by simulation software hinder the simulation of large-scale 
networks. To overcome this problem, our system supports distributed simulations in such 
a way that each participating simulator possesses only data related to the part of the 
network it simulates. This solution supports simulations of large-scale networks on 
machines with modest memory size. This work has been led by the PI of the entire 
project, Prof. Boleslaw Szymanski. 
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Figure 4. An Overall Execution Scheme in Genesis. 
 
Another need addressed by our work includes the use of a large-scale parallel packet-
level simulation of various networking protocols to understand their dynamics.  For 
example, there are several issues in routing that need to be understood, such as cascading 
failures, inter/intra-domain routing stability, and interactions of policy-based routing with 
BGP features. One needs to perform large-scale simulations of inter-domain routing 
protocols along with various traffic engineering extensions, in order to observe their 
dynamics causing or effecting various performance problems in the current Internet. 
 
We address this need using two techniques for parallel discrete event simulation of 
networks. First, we leverage an optimistic synchronization protocol to enable efficient 
execution on a hyper-threaded, multiprocessor system. Here, simulation objects, such as a 
host or router, are allowed to process events unsynchronized without regard for the 
underlying topology or timestamp distribution.  If an out-of-order event computation is 
detected, the simulation object is rolled back and re-processed in the correct timestamp 
order using “reverse computation”. This approach greatly reduces the amount of state 
required to support optimistic event processing as well as increases performance. Second,  
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we devised an extremely light-weight model implementation framework called ROSSNet 
that is specifically designed for large-scale network simulation. If we examine state-of-
the-art frameworks, such as ns, SSFNet, DaSSF, and PDNS, we find models that are 
highly detailed almost to the point of being full-protocol network emulators. For 
example, these frameworks provide support for a single end-host to have multiple 
interfaces, a full UNIX socket API for connecting to real applications, and other details 
that we believe are not necessarily relevant for large-scale simulation studies. The end 
result is that these systems require almost super-computer amounts of memory and 
processing power to execute large-scale models. In contrast, our framework implements 
minimum features needed to model network and be able to answer a particular protocol 
dynamics question in a large-scale scenario. This part of the project has been led by co-PI 
of this project, Prof. Christopher Carothers. 
 
The theoretical part of our work focused on understanding and modeling the traffic 
characteristics in both wired and wireless networking environments as well as on network 
routing, and specifically on the dynamics of BGP, its analytic characterization and on 
developing techniques to improve its stability and convergence time. This part of work 
was led initially by the original co-PI of this project, Prof. Kenneth Vastola, replaced 
later by co-PI, Prof. Biplab Sikdar. 
 
With significant progress in silicon technologies, storage media and signal processing in 
recent years, many applications, such as multimedia communication, become possible.  
Compared with traditional network file sharing or exchanging, multimedia 
communication is far more difficult because of its stringent requirements. For instance, 
Internet video streaming requires network to provide bandwidth, packet loss, delay and 
delay jitter guarantees, at least in a statistical sense. But today's Internet does not provide 
any of these guarantees. Researchers have tried to develop enabling technologies for 
bandwidth and delay guaranteed applications. But all of them have encountered their 
respective difficulties, either in algorithm complexity or in real deployment (especially in 
an inter-domain context). 
 
In summary, the problem of Quality of Service (QoS) was unsolved for multi-domain IP-
based inter-networks primarily due to complex deployment and coordination issues. By 
“QoS” we refer to stable assurances on loss rate, bandwidth and delay. In contrast, QoS 
within a single administrative network today is largely a non-issue due to declining 
bandwidth costs and availability of administrative controls. This part of the project 
addressed the critical issue of Quality of Service (QoS) in multi-domain IP-based inter-
networks primarily and was led by co-PI, Prof. Shivkumar Kalyanaraman. 
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3. Methods, Assumptions, and Procedures 
 

3.1 Recursive Random Search: Large-Scale Experiment Design for 
Online Simulation 
 
Meta-simulation capabilities go beyond mere scaling of simulation platforms and 
providing large-scale experiment design. Statistical experiment design considers the 
system-under-test as a black-box that transforms input parameters to output metrics. The 
goal of experiment design is to maximally characterize the black-box with the minimum 
number of experiments. Another goal is robust characterization, i.e., one that is minimally 
affected by external sources of variability and uncontrollable parameters, and can be 
specified at a level of confidence. Beyond characterization, the methodology aims to 
optimize the system, i.e. allows one to find the appropriate input parameter vector that 
elicits the best output response. The underlying premise of experiment design is that each 
experiment (e.g., a simulation run, an Emulab or Planetlab test run) has a non-negligible 
cost.   
 
Parameter configuration is a common procedure used in large-scale network protocols to 
support multiple operational goals. This problem can be formulated as a black-box 
optimization problem and solved with an efficient search algorithm. The method of 
choosing experiments (or simulations) to solve this problem is called “experiment 
design” (Figure 5). Experiment design is truly the “brains” behind a self-aware, self-
tuning network. In essence, experiment design chooses what simulations to run so that a 
high-level network design or configuration objective can be met. This is important for 
large-scale parameter configuration, and involves the global search in a very-large-
dimensional state space.   
 
In this project we have developed a heuristic Recursive Random Search (RRS), for large-
scale network parameter optimization (see Figure 5). RRS is meant for global 
optimization problems with little or no information known about the problem structure. 
Therefore it has wide applicability. RRS is also particularly useful for large-dimensional 
problems (e.g., 1000s-millions of parameter dimensions) and has the property of being 
able to find “good” solutions "fast”, i.e., it displays a high degree of efficiency compared 
to known search techniques (e.g., multi-start hill climbing, genetic algorithms, simulated 
annealing, tabu search, etc).  
 
The RRS algorithm is based on the initial high-efficiency property of random sampling 
and attempts to maintain this high-efficiency by constantly “restarting” random sampling 
with adjusted sample spaces. Due to its root in random sampling, the RRS algorithm is 
robust to the effect of random noises in the objective function and is advantageous in 
optimizing the objective function with negligible parameters. These features are very 
important for the efficient parameter optimization of network protocols. The performance 
of RRS has been demonstrated with the tests on a suite of benchmark functions.  
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Figure 5. Schematic Illustrating the Recursive Random Search (RRS) Technique: 
Re-scaling the Search Space and Using Random Sampling Throughout. 

 
We have conducted scaling tests with RRS to handle thousands of parameter dimensions 
in very difficult test optimization benchmarks (see example in Figure 6). The RRS 
algorithm has been applied to the adaptive configuration of several real-world network 
protocols, such as RED, OSPF and BGP. The particular problems include RED parameter 
tuning, OSPF link weight tuning for traffic engineering, and BGP outbound load 
balancing using LOCAL_PREF tuning.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Complex Benchmarks and Large-Dimensional Test Results with RRS. 
 
An application to RRS to a real network online simulation problem is illustrated in Figure 
7. In the middle of each simulation, the RRS system kicks in to improve performance.  
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Figure 7. An Application of RRS to a Real Network to Improve Performance. 
 
 
Our recursive random search (RRS) algorithm has been extended to make it more 
general. This approach is called Unified Search Framework (USF). Unified Search 
Framework (USF) is a general, component-based, parallel optimization platform (see 
Figure 8).  Currently, when given a specific optimization problem, one has to choose or 
design one algorithm, then implement it to apply to the problem. USF, in contrast, can be 
used to easily construct on-the-fly, a tailored optimization algorithm for a specific 
problem, that is run in a parallel way to fully utilize available computing resources. We 
have tested the USF on some benchmark functions and got very promising test results.  
 
The main advantage of the USF is that it can function as a general platform to address 
various practical optimization problems with different features.  It is especially suitable 
for those large-scale problems with simulation for function evaluations, such as the ones 
in on-line network parameter optimization. In future work, we will apply the USF to a 
variety of large-scale network optimization problems and demonstrate the flexibility of 
the USF in handling different problems. 
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Figure 8. Schematic of the Unified Search Framework (USF). 
 

3.2. Genesis 
 
In simulating large-scale networks at the packet level, one major difficulty is the 
enormous computational power needed to execute all events that packets undergo in the 
network. Conventional simulation techniques require tight synchronization for each 
individual event that crosses the processor boundary. The inherent characteristics of 
network simulations are the fine granularity of events (individual packet transitions in a 
network) and high frequency of events that cross the boundaries of parallel simulations. 
These two factors severely limit parallel efficiency of the network simulation executed 
under the traditional protocols. 
 
Another difficulty is the large memory size required by large-scale network simulations. 
With the current trend of simulating ever larger and more complicated networks, the 
memory size becomes a bottleneck. Centralized network configuration and routing 
information results in large memory requirements during construction of the simulated 
network. Additionally, the needed memory increases also with the intensity of traffic 
flows that dictate the size of the future event list. We believe that to simulate truly large 
networks, the comprehensive, distributed memory approach is needed. 
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This part of a project focused on developing an architecture that can efficiently simulate 
very large heterogeneous networks in near real time. Our approach combines simulation 
and modeling in a single execution. The network parts, called domains, are simulated at 
the packet level concurrently with each other. Each domain maintains the model of the 
network external to itself that is built by using periodically output from other domain 
simulations. If this model is faithfully representing the network, the domain simulation 
will exactly represent the behavior of its domain, so its output will support the correct 
models maintained by other simulations.  Each domain simulation repeats its execution, 
each time adjusting its model of the rest of the network and feeding the other simulations 
with increasingly precise model of its own domain.  As a result, all domain simulations 
collectively converge to the consistent state of all domains and all models. 
 
Thanks to the coarse granularity synchronization mechanism used in this system, it is 
able to use different simulators in a single, coherent network simulation, hence we called 
it General Network Simulation Integration System, or Genesis in short. 
 
Genesis also addresses the large memory requirement problem in large-scale network 
simulations. Many parallel simulation systems are capable of speeding-up simulation 
time. However, to accomplish such a speedup, they require that every machine involved 
has a big enough memory to hold the full network. This requirement is most easily 
achieved through a system with shared memory. In Genesis, in contrast, memory usage is 
fully distributed. Each Genesis domain simulator stores only a part of the network, 
together with some additional information that is required to cooperate with other 
simulators. In such a way, large networks can be simulated by clusters of machines, in 
which each machine has only a small memory. 
 
3.2.1 Genesis Approach 
 
Because of the huge amount of events and high event rate involved in large-scale network 
simulations, parallel and distributed simulation techniques introduce high 
synchronization overhead. This overhead comes from a “general rule” for parallel and 
distributed simulations: each event that is created on one processor and needs to be 
executed on the other introduces synchronization overhead. The processors involved in 
such an event need to be synchronized for this event and this delays their execution. This 
general rule limits the improvement of synchronization performance for network 
simulation. Can we break this “general rule”? Our efforts to find the answer for this 
question had led us to the research presented here. 
 
In the traditional view of network simulation, we consider a group of parallel or 
distributed simulation sub-systems as one simulation system that is required to produce 
exactly the same simulation result as a sequential simulation. However, in many network 
simulation applications, we do not care what may have happened to individual network 
packets. Instead, we are more interested in some “metrics”, for example, traffic 
throughput, end-to-end packet delay, packet lost rate, et cetera. Thus, from the higher-
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level view, we are running simulations to achieve statistics data for the “metrics” we are 
interested in. A simulation system only needs to produce these data accurately, or with 
approximations within a satisfactory range, instead of guaranteeing the correct behavior 
of each individual packet. This gave us the possibility to simplify a network simulation. 
 
With this novel view of network simulation, we consider a distributed simulation system 
as a loosely coupled distributed computing system.  Each distributed domain simulator 
runs separately doing local computation (simulating the domain assigned to it) within a 
period of time, with all the information of the network it has at that time, to produce local 
results as accurately as possible. Periodically, these distributed simulator exchanges 
computation results and updates network information among them. Each simulator uses 
“fresh” information to update its own computation and information base, to produce more 
accurate results during the next iteration. In this way, we don't need to synchronize and 
exchange data among simulators at event-level (packet-level). The synchronization for 
these loosely coupled sub-systems can be very infrequent and the overhead can be 
reduced significantly. 
 
In Genesis, a large network is decomposed into parts and each part is simulated 
independently and simultaneously with the others. Each part represents a subnet or a sub-
domain of the entire network. These parts are connected to each other through edges that 
represent communication links existing in the simulated network. In addition, we 
partition the total simulation time into separate simulation time intervals selected in such 
a way that the traffic characteristics change slowly during most of the time intervals. 
 
Each domain is simulated by a separate simulator that has a full description of the flows 
whose sources are within that domain. This simulator also needs to simulate and estimate 
flows whose sources are external to the domain but will be routed to or through the 
domain. In addition to the nodes that belong to the domain by the user designation, we 
also create domain closure that includes all the sources of flows that reach or pass 
through this domain. Since these are copies of nodes active in other domains, we call 
them proxy sources.  Each proxy source uses the flow definition from the simulation 
configuration file. 
 
The flow delay and the packet drop rate experienced by the flows outside the domain are 
simulated by the random delay and probabilistic loss applied to each packet traversing the 
in-link proxy. These values are generated according to the average packet delay as well 
as observed packet loss frequency communicated to the simulator by its peers at the end 
of simulation of each time interval. Each simulator collects this data for all of its own 
out-link proxies when packets reach the destination proxy. 
 
A Farmer-Worker system is designed for data exchange among these domain simulators. 
Each domain simulator runs as a worker, and one stand-alone server runs as a farmer to 
synchronize domain simulators. Every domain simulator stops its simulation at pre-
defined checkpoints, and exchanges data with all the other domain simulators. During a 
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checkpoint, each domain simulator also checks its convergence condition by analyzing 
the received data, based on some pre-defined metrics (end-to-end packet delay, packet 
loss rate, etc.) and parameters (e.g. precision threshold). The farmer collects convergence 
information from all domain simulators and makes global convergence decisions. If some 
convergence condition is not satisfied, the farmer will inform some or all domain 
simulators to roll back and re-iterate. Those simulators that need to roll back will go back 
to the last checkpoint and re-simulate the last time interval, however, utilizing the data 
received during the current checkpoint. When all the domain simulators converge, a 
global convergence is reached and the farmer will inform all the domain simulators to go 
on to the next time interval. The system framework is shown in Figure 4. 
 
Genesis uses a coarse granularity synchronization mechanism, described above, to 
simulate network traffics, e.g., TCP or UDP flows. This is achieved by having parallel 
simulators loosely cooperating with each other in the Farmer-Worker framework. They 
simulate partitioned network concurrently with and independently of each other in each 
iteration. They exchange data only during the checkpoints executed between iterations. In 
addition, individual packets are not stored or exchanged among parallel simulators. 
Instead, each data flow is summarized based on some pre-defined metrics, and only the 
summarized traffic information is exchanged among parallel simulators. 
 
This approach avoids frequent synchronization of parallel simulators. Parallel domain 
simulators are running independently. Each of them uses data that it received from others 
to represent the external network outside of its own domain. By periodically exchanging 
data with other domain simulators and reiterating over the same simulation time interval 
to achieve a global convergence, the simulation of the whole network approximates the 
sequential simulation of the same network with controllable precision.  
 
We believe that communication networks simulated this way will converge thanks to the 
fact that path delays and packet drop probabilities are monotonic functions of the traffic 
intensity (congestion). For example, if in iteration Ik a part Ni of the network receives 
more packets than the sequential simulation would deliver, then this part will produce 
fewer packets than the sequential simulation would. These packets will create inflows in 
the iteration Ik+1. Clearly then, the sequential simulation will deliver the number of 
packets that is bounded from above and below by the numbers of packets generated in 
two subsequent iterations Ik and Ik+1. Hence, in general, iterations will produce alternately 
too few and too many packets in the inflows providing the bounds for the number of 
packets in the sequential simulation. By selecting the middle of each pair of bounds, the 
number of steps needed to convergence can be limited to the order of logarithm of the 
needed accuracy, so convergence is quite fast. In our experiments, the convergence for 
UDP traffic was achieved in 2 to 3 iterations, for TCP or mixed UDP/TCP traffic in 5-10 
iterations, and for BGP/TCP/UDP traffic it was about twice the number of Autonomous 
Systems simulated. 
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One issue of great importance for efficiency of the described method is frequency of 
synchronization between simulators of parts of the decomposed network. Shorter 
synchronization time limits parallelism but decreases also the number of iterations 
necessary for convergence to the solution because changes to the path delays are smaller. 
Variance of the path delay of each flow can be used to adaptively define the time of the 
synchronization for the subsequent iteration or the simulation step. 
 
It is easy to observe that the execution time of a network simulation grows faster than 
linearly with the size of the network. Theoretical analysis supports this observation 
because for the network size of order O(n), the sequential simulation time include terms 
that are of order  O(1) to O(n*log(n)), that correspond to processing events in the order of 
their simulation time in the event queue (depending on queue types); O(n(log(n))2) to 
O(n2) (depending on the model of the network growth) that result from number and 
complexity of events that packets undergo flowing from source to destination. The 
average length of a path traversed by each packet, the number of active flow sources, the 
number of flows generated by each source and even the number of packets in each flow 
may grow at the rate of O(log(n)) to O(na), where 0.5<a<1, as the function of n, the 
number of nodes in the network. They together create the super-linear growth in the 
number of the events processed by the simulation. From the above, we can conclude that 
the execution time of a network simulation is a superlinear function of the network size. 
Therefore, it is possible to speed up the network simulation more than linearly by 
splitting a large simulation into smaller pieces and parallelizing the execution of these 
pieces. 
 
Another advantage of the proposed method is that it is independent of any specific 
simulator technique employed to run simulators of the parts of the decomposed network. 
Rather, it is a scheme for efficient parallelization based on convergence to the fixed-point 
solution of inter-part traffic. The convergence is measured by a set of parameters 
characterizing the traffic rather than individual packets.  Our primary application is 
network management based on on-line network monitoring and on-line simulation. The 
presented method fits very well to such an application as it predicts changes in the 
network performance caused by tuning of the network parameters. Hence, the fixed-point 
solution found by our method is, with high probability the point into which the real 
network will evolve. However, there are open questions such as under what conditions 
the fixed-point solution is unique, or when the solution found by the fixed-point method 
coincide with the operating point of the real network. 
 
In many network simulation scenarios, the real data of the traffics packets are not 
important to the simulation result, so no individual packet is synchronized between two 
parallel simulations in UDP and TCP traffic simulations. Instead, packets are 
“summarized” on some metrics (delay, drop rate, etc.). Only these data are exchanged 
between domains at the end of each time interval. This approach was designed to 
simulate TCP and UDP data traffics, but could not be used to simulate some other flows, 
for example, data flows providing information for routing protocols. This is because the 
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traffic of a routing protocol cannot be summarized; instead, different content and timing 
of each routing packet might change the network status. Particularly, our desire to 
simulate the BGP protocol required us to develop additional synchronization mechanism 
in Genesis. 
 
We developed an event-level synchronization mechanism that can work within the 
framework of Genesis and support the simulation of the BGP protocol. To simulate a 
network running the BGP protocol for inter-AS (Autonomous System) routing, with 
background TCP or UDP traffics, we decompose the network along the boundaries of AS 
domains. Each parallel simulator simulates one AS domain, and loosely cooperates with 
other simulators. When there are BGP update messages that need to be delivered to 
neighbor AS domains, the new synchronization mechanism in Genesis guarantees that 
these messages will be delivered in the correct time-stamp order. At the synchronization 
point in Genesis, the BGP update messages collected in the proxy BGP routers, if there 
are any, are forwarded to the corresponding destination AS domain simulators through a 
component called BGP agent. These update messages are delivered to the BGP agent in 
the destination AS domain through a Farmer-Agent framework, and are distributed there 
to the BGP routers which are the destinations of these messages. 
 
Simulations of large-scale networks require large memory sizes. This requirement can 
become a bottleneck of scalability when the size or the complexity of the network 
increases. For example, ns2 uses centralized memory during simulation, which makes it 
susceptible to the memory size limitation. We believe that the only permanent solution to 
the simulation memory bottleneck is to develop the distributed memory approach. 
 
In a typical parallel network simulation using non-distributed memory, each of the 
parallel simulators has to construct the full network and to store all dynamic information 
(e.g., routing information) for the whole network during the simulation. To avoid such 
replication of memory, we developed an approach that completely distributes network 
information. Thanks to this solution, Genesis is able to simulate large networks using a 
cluster of computers with smaller dedicated memory (compared to the memory size 
required by shared memory-based SSFNet simulating the same network). 
 
To test the performance of our solution, we run BGP network simulations in which the 
first round of BGP update message burst happens when AS domains start to exchange 
BGP information to set up the global inter-AS routing. In Genesis, AS domains are 
simulated distributively, and BGP update messages are synchronized by re-iterating over 
one time interval until the BGP messages exchanged among domains converge (no more 
changes) on that interval. When a BGP update message propagation happens, Genesis re-
iterates over the same time interval until the propagation converges. Each re-iteration 
consumes simulation run time. When BGP update message propagations happen 
periodically during the simulation, the additional run time required by these re-iterations 
will decrease the speedups achieved by utilizing parallel simulation. An interesting 
question is how such on-going BGP activities would affect the simulation performance. 
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To investigate this question, we introduced BGP session crashes into our experiments. 
The simulation time was fixed at 400 seconds for 20 AS's and, correspondingly 20 Sun 
10 Ultrasparc workstations. The BGP session between two neighboring AS domains, 
campus network 3 and 4, crashed every D seconds, each time staying down for D/2 
seconds, and then coming back and staying alive for another D/2 seconds. 
 
As expected, in the simulation time intervals in which the specified BGP session went 
down, BGP update messages were propagated causing the broken routes to be withdrawn 
and back up routes being set up. Accordingly, data packet flows also changed and used 
the new routes. When that BGP session came back again, BGP update messages 
propagated again and re-established the broken routes. In either case, the relevant time 
interval had to be re-iterated again and again until it converged. So these intervals were 
“slow-down” periods. The time intervals with no BGP propagations were “speed-up” 
periods thanks to the novel parallel simulation mechanism used by Genesis. As a result, 
the proportion of the “slow-down” time in the whole simulation time affects the overall 
speedup: the less frequently the crashes happen, the greater the speedup that can be 
achieved. When the frequency of BGP crashes is not high, these “slow-down” periods 
will not significantly slow down the progress of the simulation. 
 
On the other hand, the length of the time interval also affects the total re-iteration time. 
Ideally, smaller the length of the time interval, shorter the total re-iteration time. But 
there are two other factors which benefit from longer intervals.  First, small interval 
length increases the synchronization and checkpointing overheads between intervals and 
can overwhelm the simulation speedup. Second, if the interval length is too small to 
cover the BGP propagation period, then the next time interval will need to be 
re-iterated in addition to the current one. We varied the value of D from 80 to 60, 40 and 
then 20 seconds, and also used different lengths of iteration time intervals for Genesis 
checkpointing, denoted as T, which was set to 20, 10 and 5 seconds. Figure 9 shows the 
speedups achieved in these experiments. 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Distributed UDP Flooding Simulation with U.S. Backbone Net Topology.  
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Java-based SSFNet and C++/TCL-based ns2 use different network models and different 
simulation frameworks. The details of the implementation of traffic packets and other 
network entities are different in these two systems. Thanks to the coarse granularity 
synchronization framework in Genesis, only traffic statistics data summarized on some 
metrics are exchanged among domain simulators, while the implementation details of the 
actual network traffic in one domain can be viewed as a black box to the other. This 
facilitates the design of a general integration framework. 
 
In Genesis, we designed the general format of the traffic statistics data message being 
exchanged in the framework, and the general conventions for a domain simulator to 
identify a network entity (e.g., nodes identified by a global node id). Then, the rest of the 
work is the implementation of conversion between native data format and the general 
message format for both SSFNet and ns2. Because of this general inter-operation 
interface an SSFNet domain simulator can work with either SSFNet or ns2 domain 
simulators in exactly the same way. Another advantage of this approach is its 
extensibility: any domain simulators complying with this general interface can be easily 
plugged into Genesis. 
 
Based on the design of interoperability between ns2 and SSFNet, we adopted a similar 
approach to enable interoperability between SSFNet and GloMoSim. We created a 
scenario where we have mixed-mode traffic between a wired network (modeled using 
SSFNet) and a wireless network (modeled using GloMoSim). The SSFNet part of the 
network views the wireless GloMoSim domains as a single node proxy network, which is 
the source and sink for all traffic originating and destined respectively to the latter. 
Similarly, for GloMoSim, the SSFNet domains are represented by a single node proxy 
network as well. At each checkpoint interval, the information about inter-domain traffic 
statistics data is exchanged between SSFNet and GloMoSim simulations. The receiving 
simulation uses this information to adjust the single node proxy network and the links 
connecting to it, to better represent its cooperating simulation. And based on the received 
information and local conditions in the domain, a decision whether to roll back or not is 
made by each of the domains. 
 
3.2.2 Genesis Design Overview 
 
Genesis took some common approaches for parallel and distributed simulation systems 
and had all the general components for these systems, although it adjusted them to meet 
the special needs of coarse granularity synchronization. In conventional parallel or 
distributed simulation that uses the space partitioning technique to divide network into 
domains, the system usually consists of these general components: 
 

• Network partitioning. The network topology being simulated is logically 
partitioned into areas, and each area is assigned to one processor. The simulation 
script that defines the network provides some functionalities to divide the network 
and assign processors. 
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• Concurrent Simulation. Network areas are simulated concurrently on different 
processors. Each processor simulates only the part of the network assigned to it 
and handles events generated from this part of network, or events received from 
other processors. 

• Data management. In conventional simulation, the simulation data exchanged 
among processors are events. Events originated from one processor and targeted 
to another processor are remote events. The parallel or distributed simulation 
system should recognize these remote events and forward them to the correct 
destination, by using either shared memory or explicit information exchanging 
techniques (e.g. MPI, socket connection). 

• Time management. Parallel or distributed simulators need to be synchronized. As 
we explained earlier, different synchronization approaches are designed to 
achieve the same goal that in each processor, events are handled in the correct 
order of their time-stamps. 

 
In our novel simulation system using coarse granularity synchronization technique, there 
are differences in the roles and functions of these components: 
 

• Network partitioning. A network topology is partitioned in the same way as in 
conventional simulations, and each network partition is assigned to one processor. 
However, it does not mean that one processor will only simulate the partition 
assigned to it. Instead, the assigned partition is the “simulation focus” of this 
processor, and fragments of other partitions related to this one will also be 
simulated in this processor. 

• Concurrent Simulation. Each processor simulates the network partition assigned 
to it in detail the same way as conventional simulation systems. However, 
processors do not exchange remote events among each other. Instead, each 
processor contains not only its own part of the network, but also a simplified 
model of the rest of the network. Thus, a “remote” event related to the rest of the 
network can be delivered to the corresponding simplified network model. In this 
way, there is no need to exchange “remote events” all events are internal events to 
a processor. 

 
• Data management. Data management in Genesis is different from conventional 

systems. No remote events need to be exchanged among processors. As explained 
above, for one processor, the simplified network model serves as a representation 
of the part of network simulated in details by other processors, in other words, the 
“outside world”. In order to correctly represent the “outside world”, each 
processor collects simulation statistics data from the part of network assigned to it 
and exchange them with other processors. Each processor then uses the data 
received from other processors to adjust the network model representing the 
“outside world”. 
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• Time partitioning and management. Time management in Genesis is different 
because no remote events need to be synchronized. Instead, the simulation time is 
partition into intervals separated by checkpoints. During each checkpoint, the 
simulation time of every processor is synchronized and a convergence decision is 
made. Based on the received data from its peer domains, a domain simulator 
might need to re-iterate one simulation time interval to produce more accurate 
results. 

 
In Genesis, network partitions are called domains. For one processor, the domain 
assigned to it is called an active domain, and the domains assigned to other processors are 
called non-active domains. In the active domain, the network structure is the same as the 
non-decomposed network. In non-active domains, traffic sources and destinations are 
represented by proxy sources, which can be activated or deactivated dynamically during 
the simulation. Path shortcuts are used to simplify any traffic paths in non-active 
domains. They are implemented as proxy links that connect proxy sources directly to 
border routers in the domain. Simulation statistics data are used to adjust these proxy 
links to represent network traffic changes during the simulation. Each processor is only 
responsible for the simulation of its active domain, and collects simulation statistics data 
within the active domain. However, the proxy source and proxy link structure for non-
active domains is also essential that it completes the traffic path from the source node to 
the destination node. As the result, in Genesis, each processor simulates full traffic paths 
from source nodes to destination nodes. This is important because for TCP traffic source 
nodes must receive ACK packets from destination nodes to continue its packet sending. 
 
The Genesis system model explained above introduced a new approach of constructing a 
distributed simulation system. However, Genesis is not only one network simulation 
system. Instead, it is a general approach that can be used to transform conventional 
sequential or parallel simulation systems into scalable distributed simulation systems, as 
well as constructing new systems from scratch. Besides this, different conventional 
systems transformed by the Genesis approach will be able to cooperate with each other. 
 
The approach in Genesis described above was originally designed for protocols that 
generate packets without feedback flow control, such as Constant Bit Rate (CBR) UDP 
traffic. However, modeling the inter-domain traffic that uses feedback based flow control, 
such as any of many variants of TCP, requires more processing capabilities. To control 
congestion in a network or the Internet, some protocols use congestion feedback. The 
most important among them is the TCP protocol used in TCP/IP-based Internet 
congestion control. For our method, the important property of TCP traffic is that the rate 
of the source is dependent on the conditions not only in the source domain but also in all 
intermediate and destination domains of the traffic. Additionally, each data flow has a 
corresponding acknowledgment flow that paces the source. As a result, for the TCP 
traffic, the precision of our flow simulation depends on the quality of the replication of 
the round trip traffic by the packets and their acknowledgments. Moreover, the feedback 
loop for iterations is extended. For example, in two-domain TCP traffic, a change in 
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congestion in the source domain will impact delays of data packets in the destination 
domain in the following iteration and the delays of the acknowledgment packets in yet 
subsequent iteration. As a result, convergence is slower in simulation of networks with 
TCP flows. Still, a superlinear speedup has been achieved for a sample network of 64 
nodes and large number of TCP and UDP flows (see Figure 10). 

 
Figure 10. Superlinear Speedup for TCP and UDP Traffic in 64-node Network. 

3.3. ROSS-Net  
 
ROSS-Net is a novel parallel network simulation system using a discrete event simulation 
technique and optimistic protocol. It uses two new techniques that are essential to its 
efficiency and usability. First, ROSS-Net leverages an optimistic synchronization 
protocol to enable efficient execution on a hyper-threaded, multiprocessor system. In 
ROSS-Net, simulation objects, such as a host or router, are allowed to process events 
unsynchronized without regard for the underlying topology or timestamp distribution.  If 
an out-of-order event computation is detected, the simulation object is rolled back and re-
processed in the correct timestamp order.  Unlike previous optimistic protocols, such as 
Time Warp, the rollback mechanism is realized using reverse computation. Here, events 
are literally allowed to execute backward to undo the computation. This approach greatly 
reduces the amount of state required to support optimistic event processing as well as 
increases performance. 
 
Next, we devised an extremely light-weighted model implementation framework that is 
specifically designed for large-scale network simulation. If we examine state-of-the-art 
frameworks, such as Ns, SSFNet, DaSSF, and PDNS, we find models that are highly 
detailed almost to the point of being full-protocol network emulators. For example, these 
frameworks provide support for a single end-host to have multiple interfaces, a full UNIX 
socket API for connecting to real applications, and other details that we believe are not 
necessarily relevant for large-scale simulation studies. The end result is that these 
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systems require almost super-computer amounts of memory and processing power to 
execute large-scale models. 
 
In contrast, our framework poses the question: “what does the user really need to model 
in order to answer a particular protocol dynamics question in a large-scale scenario?” For 
example, are all layers in a protocol stack really necessary? Can a host just be a TCP 
sender or just a TCP receiver? Does the simulated host really need to be both? By asking 
these kinds of questions, our framework enables a single TCP connection to be realized 
in just 320 bytes total (both sender and receiver) and 64 bytes per each packet-event. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Topology of the AT&T US Network Simulated in Ross.Net. 
 
These innovations enable the simulation of million-node network topologies using 
inexpensive commercial off-the-shelf multiprocessor systems consuming less than 1.4 
GB of RAM in total. We have recently simulated the AT&T and several other large 
networks with full OSPF and TCP dynamics in a large-scale simulation platform. This 
configuration has tens of thousands of routers and over a million TCP flows interacting 
dynamically. This example suggests that we can now begin to simulate and make 
exploratory analysis of large-scale protocol feature interactions with our simulation and 
experimental design platform. Such complex feature interactions cannot be simulated, 
visualized or explored in small-scale ns-2 simulations. 
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3.4. Traffic and BGP Modeling 
 
In traffic modeling, our work started in the wired networking domain where we 
investigated the causes of second order scaling in network traffic and proposed solutions 
for reducing the degree of scaling. We first showed, using analysis, measurements from 
real world traces as well as ns-2 simulations that timeouts and exponential backoffs are 
two of the main causes behind scaling a TCP traffic. We also showed that the degree of 
scaling is related to the loss rates seen by the TCP flows and the congestion on the links. 
These observations were then used to develop techniques, both at the user as well as 
network level, to reduce the degree of scaling a TCP traffic. We proposed and showed the 
effectiveness of TCP pacing and active queue management strategies to reduce second-
order scaling a TCP traffic. In the next phase of our work, we developed analytic models 
for network traffic (more specifically, for the packet inter-arrival times) in IEEE 802.11 
based wireless networks. We also showed the presence of scaling behavior in the traffic 
of such networks. The packet interarrival model was then extended to obtain the MAC 
layer packet service times and consequently the distribution function of the delay in 
802.11 based networks (using discrete time G/G/1 queues). 
 
In BGP routing, our initial work focused on simulations to obtain empirical relationships 
between the convergence times of a network of BGP routers and the stochastic properties 
of the random graph characterizing the network. We then developed analytic models to 
characterize the probability of the convergence times exceeding certain bounds based on 
the network properties. These models characterize the probability of successive 
expirations of the Minimum Route Advertisement Interval (MRAI) timer as a function of 
network topology (we use random graphs to characterize the network topologies). We 
have also developed techniques to reduce the convergence time of a network of BGP 
routers. These techniques are based on identifying the causes of redundant MRAI timer 
instantiations by BGP routers and then preventing them. Our results show considerable 
reduction in the convergence times when our proposed modifications are incorporated 
into BGP. 

3.5 Overlay QoS Using Closed-Loop Control 
 
With significant progress in silicon technologies, storage media and signal processing in 
recent years, many applications, such as multimedia communication, become possible.  
Compared to traditional network file sharing or exchanging, multimedia communication 
is far more difficult because of its stringent requirements. For instance, Internet video 
streaming requires network to provide bandwidth, packet loss, delay and delay jitter 
guarantees, at least in a statistical sense. But today's Internet does not provide any of 
these guarantees. Researchers have tried to develop enabling technologies for bandwidth 
and delay guaranteed applications, but all of the proposed techniques have encountered 
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their respective difficulties, either in algorithm complexity or in real deployment 
(especially in an inter-domain context). 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 12. Overlay QoS Using Closed-Loop Control. 
 
In summary, prior to this project, the problem of Quality of Service (QoS) was unsolved 
for multi-domain IP-based inter-networks primarily due to complex deployment and 
coordination issues. By “QoS” we refer to stable assurances on loss rate, bandwidth and 
delay. In contrast, QoS within a single administrative network today is largely a non-
issue due to declining bandwidth costs and availability of administrative controls. 
 
The Overlay QoS project focused on enabling QoS on top of existing FIFO inter-
networks. This project has reduced the costs of engineering, provisioning and operating 
inter-networks with a range of QoS properties. The result of this research has been to 
enable a new paradigm, called “QoS-on-a-dime”. The concept is that DoD can patch 
together an overlay network on top of heterogeneous allies’ networks, and provision QoS 
on top of it using our fully distributed, light-weight tools! This has the potential to give 
the DoD dramatic tactical superiority and agility in a rapidly changing geo-political world 
and in a network-centric mode of warfare. We have provided a large-scale real-world 
demo of this capability (on the Planetlab infrastructure) in the DARPA NMS PI meetings.  
 
To support the concept of Overlay QoS, we proposed a model to use accumulation, 
buffered packets of a flow inside network routers, to measure and control network 
congestion. This model is called accumulation-based congestion control (ACC). We 
developed a general control algorithm that includes a set of control policies. We proved 
its proportional fairness and global stability. ACC's router buffer scales to the number of 
sharing flows. We leveraged an adaptive virtual delay queuing (AVD) algorithm based 
upon work done at University of Illinois, Urbane Champaign which is incrementally 
deployable, to keep a small queue. This represents a major integration of a large class of 
congestion control methods into one theoretical framework. 
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The ACC model is then used as a closed-loop data-plane building block to provide 
weighted sharing and expected minimum rate services. Specifically we provide weighted 
service by allocating different accumulation among flows; we provide expected rate 
service by adaptively allocating accumulation to a flow such that the expected rate is 
achieved without the need for explicit admission control. The relaxing of the admission 
control requirement, allowing graceful service degradation for lower priority flows is a 
dramatic advance over current technologies that may become unstable and blow up 
during such regimes of operation. We provide a steady state queuing and optimization 
analysis to show the theoretic results for a general network topology. 
 
We implemented the Monaco scheme in Linux v2.2.18 using MIT Click software router 
as well as the ns-2 simulation package. We validated the theoretic results by extensive 
simulations and linux-based emulation experiments. The framework has been tested on 
the world-wide infrastructure called Planetlab (www.planet-lab.org, see Figure 11). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. The World-wide Planetlab Infrastructure on Which Overlay QoS NMS 
Work Was Demonstrated. 
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4. Results and Discussion 
  
The need for scalable and efficient for network analysis and management increases with 
the rapidly growing complexity and dynamics of the Internet. This project addresses this 
need at many different aspects.  
 
In the area of a network experiment design, we have conducted scaling tests with 
Recursive Random Search (RRS) in which we handled thousands of parameter 
dimensions in difficult test optimization benchmarks. The RRS algorithm has been 
applied to the adaptive configuration of several real-world network protocols, such as 
RED, OSPF and BGP. The particular problems include RED parameter tuning, OSPF 
link weight tuning for traffic engineering, and BGP outbound load balancing using 
LOCAL_PREF tuning.   
 
An extension of RRS, called a Unified Search Framework (USF), can be used to easily 
construct on-the-fly, a tailored optimization algorithm for a specific problem, that is run 
in a parallel way to fully utilize available computing resources. We have tested the USF 
on some benchmark functions and got very promising test results. The main advantage of 
the USF is its ability to function as a general platform to address various practical 
optimization problems with different features.  It is especially suitable for those large-
scale problems with simulation for function evaluations, such as the ones in on-line 
network parameter optimization. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Tradeoff between Speed and Accuracy in Network Simulation Systems. 
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We have introduced a novel scheme, implemented in Genesis, to support scalable, 
efficient parallel network simulation. Our results indicate that the superlinear speedup for 
the single iteration step is possible and is the result of the non-linear complexity of the 
network simulation. Our approach achieved significant speedup in the simulations of 
different network scenarios. In addition to the speedup, the advantages of the presented 
method include fault tolerance, ability to integrate simulations and models in one run and 
support for truly distributed execution. When one of the participating processes fails, the 
rest can use the old delay and packet loss data to continue a simulation. When the only 
information available about a domain are delays across the domain and its outflows, the 
simulation of the other parts of the networks can directly use these data to perform the 
simulation. 
 
We also demonstrated that our system can work efficiently with fully distributed network 
memory. This design reduces and makes scalable the memory size requirement for large-
scale network simulations. As a result, Genesis is able to simulate huge networks using 
limited computer resources. The memory size required by BGP network simulation 
increases very quickly as the number of BGP routers and AS domains increases. 
Consequently, the simulation of large BGP networks was hindered by the memory size 
limitation. Genesis offers a new approach to simulating BGP on distributed memory that 
is scalable both in terms of simulation time and the required memory. In summary, 
Genesis offers a tradeoff between the simulation speed and accuracy, as shown in Figure 
14. 
 
By developing ROSS-Net, we have demonstrated that properly designed optimistic 
network simulators can be efficient and quite scalable. ROSS-Net was able to simulate 
million-node network topologies using inexpensive commercial off-the-shelf 
multiprocessor systems of a few dozen of processors consuming less than 1.4 GB of 
RAM in total. We have recently simulated the AT&T and several other large networks 
with full OSPF and TCP dynamics in a large-scale simulation platform. This 
configuration has tens of thousands of routers and over a million TCP flows interacting 
dynamically. This example suggests that we can now begin to simulate and make 
exploratory analysis of large-scale protocol feature interactions with our simulation and 
experiment design platform. Such complex feature interactions cannot be simulated, 
visualized or explored in small-scale ns-2 simulations. 
 
In our theoretical work, we showed that timeouts and exponential backoffs are two main 
causes of scaling a TCP traffic and the degree of scaling is related to the loss rates seen 
by the TCP flows and the congestion on the links. These observations were then used to 
develop techniques to reduce the degree of scaling a TCP traffic including TCP pacing 
and active queue management strategies. We have also extended the packet interarrival 
model to obtain the MAC layer packet service times and consequently the distribution 
function of the delay in 802.11 based networks. 
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We developed analytic models to characterize the probability of the BGP convergence 
times exceeding certain bounds based on the network properties that led us to develop 
techniques to reduce the convergence time of a network of BGP routers. Our results show 
considerable reduction in the convergence times when our proposed modifications are 
incorporated into BGP. 
 
In support of Overlay QoS, we developed a model called accumulation-based congestion 
control (ACC) to measure and control network congestion as well as a general control 
algorithm that includes a set of control policies. We proved its proportional fairness, 
global stability and its ability to scale with the number of sharing flows. We used this 
model to provide weighted sharing and expected minimum rate services. The relaxing of 
the admission control requirement, allowing graceful service degradation for lower 
priority flows is a dramatic advance over current technologies that may become unstable 
and blow up during such regimes of operation. We provide a steady state queuing and 
optimization analysis to show the theoretic results for a general network topology. We 
also validated the theoretic results by extensive simulations and linux-based emulation 
experiments. The framework has been tested on the world-wide infrastructure called 
Planetlab (www.planet-lab.org) 
 
As part of the DARPA program we have had active collaboration with University of 
Illinois, Urbana Champaign, Caltech, University of California, Berkeley, Dartmouth 
College, Cisco and Lucent Technologies.  
 
In addition, we have worked with SPAWAR whose representative, Mr. Phoung Nguyen 
visited RPI multiple times to study and access our technology. They have considered it as 
an option for their larger-scale integration project.  
 
Also, we have had several visits from our AFRL monitors, Mr. John Valente and Dr. 
Kevin Kwiat, who have actively participated in RPI's research and have prioritized our 
technologies for transfer to AFRL. Dr. Kevin Kwiat was also a member of a dissertation 
committee for Dr. Yu Liu whose PhD thesis was based on this project. 
 
These technology transfers occurred from 2002 to 2004. 
 
The codes for Genesis is available at http://www.cs.rpi.edu/~liuy6/genesis 
Other codes described in this report are available at 
http://networks.ecse.rpi.edu/source_code.html 
 
No patents were filled in connection with this project.
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5. Conclusions 
 
We have demonstrated that the network experiment design can be significantly improved 
with proper search frameworks. Our Recursive Random Search has been successfully 
applied to the adaptive configuration of several real-world network protocols, such as 
RED, OSPF and BGP. Its extension, Unified Search Framework is especially suitable for 
large-scale problems with simulation for function evaluations, such as the ones in on-line 
network parameter optimization. In future work, we will apply the USF to a variety of 
large-scale network optimization problems and demonstrate the flexibility of the USF in 
handling different problems. 
 
Genesis constructively proved that scalable, efficient parallel network simulation 
achieving superlinear speedup at the cost of small decrease in accuracy of the simulation 
is possible. Our approach achieved significant speedup in the simulations of different 
network scenarios. The advantages of the approach include also fault tolerance, ability to 
integrate simulations and models in one run and support for truly distributed execution.  
 
The ROSS-Net simulator developed in this project clearly demonstrates that optimistic 
parallel network simulators, when carefully designed, can provide high performance and 
scalability needed for on-line network management and optimization.  
 
Our theoretical work shows that the analytical models of network traffic and protocols 
enable improvements in the desirable aspects of network performance. The techniques 
developed by us in the program from such analytical models include reduction of the 
TCP scaling and decrease of the time to convergence by BGP routers. 
 
Overlay QoS based on accumulation-based congestion control (ACC) supports 
proportional fairness, global stability and ability to scale with the number of sharing 
flows. Using this model we were able to provide weighted sharing and expected 
minimum rate services and to relax the admission control requirement. This allows 
graceful service degradation for lower priority flows, creating a dramatic advance over 
current technologies that may become unstable and blow up during such regimes of 
operation.  
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